Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J. appl. oral sci ; 26: e20180048, 2018. graf
Article in English | LILACS, BBO | ID: biblio-954519

ABSTRACT

Abstract Objective: Periodontitis is associated with endothelial dysfunction, which is clinically characterized by a reduction in endothelium-dependent relaxation. However, we have previously shown that impairment in endothelium-dependent relaxation is transient. Therefore, we evaluated which mediators are involved in endothelium-dependent relaxation recovery. Material and methods: Rats were subjected to ligature-induced experimental periodontitis. Twenty-one days after the procedure, the animals were prepared for blood pressure recording, and the responses to acetylcholine or sodium nitroprusside were obtained before and 30 minutes after injection of a nitric oxide synthase inhibitor (L-NAME), cyclooxygenase inhibitor (Indomethacin, SC-550 and NS- 398), or calcium-dependent potassium channel blockers (apamin plus TRAM- 34). The maxilla and mandible were removed for bone loss analysis. Blood and gingivae were obtained for C-reactive protein (CRP) and myeloperoxidase (MPO) measurement, respectively. Results: Experimental periodontitis induces bone loss and an increase in the gingival MPO and plasmatic CRP. Periodontitis also reduced endothelium-dependent vasodilation, a hallmark of endothelial dysfunction, 14 days after the procedure. However, the response was restored at day 21. We found that endothelium-dependent vasodilation at day 21 in ligature animals was mediated, at least in part, by the activation of endothelial calcium-activated potassium channels. Conclusions: Periodontitis induces impairment in endothelial-dependent relaxation; this impairment recovers, even in the presence of periodontitis. The recovery is mediated by the activation of endothelial calcium-activated potassium channels in ligature animals. Although important for maintenance of vascular homeostasis, this effect could mask the lack of NO, which has other beneficial properties.


Subject(s)
Animals , Male , Periodontitis/physiopathology , Periodontitis/metabolism , Vasodilation/physiology , Potassium Channels/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Nitric Oxide/metabolism , Time Factors , Vasodilation/drug effects , Vasodilator Agents/pharmacology , C-Reactive Protein/analysis , Nitroprusside/pharmacology , Potassium Channels/drug effects , Acetylcholine/pharmacology , Random Allocation , Alveolar Bone Loss/physiopathology , Alveolar Bone Loss/metabolism , Cyclooxygenase Inhibitors/pharmacology , Prostaglandin-Endoperoxide Synthases/drug effects , Rats, Wistar , Peroxidase/analysis , NG-Nitroarginine Methyl Ester/pharmacology , Potassium Channel Blockers/pharmacology , Arterial Pressure/drug effects , Arterial Pressure/physiology , Ligation
2.
Arq. bras. cardiol ; 107(3): 223-229, Sept. 2016. graf
Article in English | LILACS | ID: lil-796033

ABSTRACT

Abstract Background: Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. Objectives: To determine the effects of jabuticaba hydroalcoholic extract (JHE) on vascular smooth muscle (VSM) of isolated arteries. Methods: Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Results: Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL). Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine) hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM). Conclusion: JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect.


Resumo Fundamentos: Embora a jabuticaba apresente importantes efeitos biológicos, suas ações sobre o sistema cardiovascular ainda não foram esclarecidas. Objetivos: Determinar os efeitos do extrato de jabuticaba (EHJ) sobre o músculo liso vascular (MLV) em artérias isoladas. Métodos: Aortas (sem endotélio) de ratos foram montadas em banho de órgãos isolados para registro de tensão isométrica. Foram verificados o efeito relaxante, a influência dos canais de K+ e das fontes de Ca2+ intra- e extracelular sob a resposta estimulada pelo EHJ. Resultados: Artérias pré-contraídas com fenilefrina apresentaram relaxamento concentração-dependente (0,380 a 1,92 mg/mL). O tratamento com bloqueadores de canais de K+ (tetraetilamônio, glibenclamida, 4-aminopiridina) prejudicaram o relaxamento pelo EHJ. A contração estimulada com fenilefrina também foi prejudicada pelo tratamento prévio com EHJ. A inibição da Ca2+ATPase do reticulo sarcoplasmático não alterou o relaxamento pelo EHJ. Além disso, o EHJ inibiu a contração causada pelo influxo de Ca2+ estimulado por fenilefrina e KCl (75 mM). Conclusão: O EHJ induz vasodilatação independente do endotélio. Ativação dos canais de K+ e inibição do influxo de Ca2+ através da membrana estão envolvidas no efeito relaxante do EHJ.


Subject(s)
Animals , Male , Vasodilator Agents/pharmacology , Plant Extracts/pharmacology , Myrtaceae/chemistry , Muscle, Smooth, Vascular/drug effects , Aorta, Thoracic/drug effects , Time Factors , Vasoconstriction/drug effects , Vasodilation/drug effects , Calcium Channel Blockers/pharmacology , Verapamil/pharmacology , Calcium Channels/drug effects , Potassium Channels/drug effects , Cell Membrane/drug effects , Reproducibility of Results , Rats, Wistar , Potassium Channel Blockers/pharmacology
3.
J. bras. nefrol ; 36(4): 512-518, Oct-Dec/2014. tab
Article in English | LILACS | ID: lil-731151

ABSTRACT

Introduction: Tuberculosis is a common opportunistic infection in renal transplant patients. Objective: To obtain a clinical and laboratory description of transplant patients diagnosed with tuberculosis and their response to treatment during a period ranging from 2005 to 2013 at the Pablo Tobón Uribe Hospital. Methods: Retrospective and descriptive study. Results: In 641 renal transplants, tuberculosis was confirmed in 12 cases. Of these, 25% had a history of acute rejection, and 50% had creatinine levels greater than 1.5 mg/dl prior to infection. The disease typically presented as pulmonary (50%) and disseminated (33.3%). The first phase of treatment consisted of 3 months of HZRE (isoniazid, pyrazinamide, rifampicin and ethambutol) in 75% of the cases and HZME (isoniazid, pyrazinamide, moxifloxacin and ethambutol) in 25% of the cases. During the second phase of the treatment, 75% of the cases received isoniazid and rifampicin, and 25% of the cases received isoniazid and ethambutol. The length of treatment varied between 6 and 18 months. In 41.7% of patients, hepatotoxicity was associated with the beginning of anti-tuberculosis therapy. During a year-long follow-up, renal function remained stable, and the mortality rate was 16.7%. Conclusion: Tuberculosis in the renal transplant population studied caused diverse nonspecific symptoms. Pulmonary and disseminated tuberculosis were the most frequent forms and required prolonged treatment. Antituberculosis medications had a high toxicity and mortality. This infection must be considered when patients present with a febrile syndrome of unknown origin, especially during the first year after renal transplant. .


Introdução: A tuberculose é uma infecção oportunista comum em pacientes transplantados renais. Objetivo: Oferecer uma descrição clínica e laboratorial de pacientes transplantados com diagnóstico de tuberculose e sua resposta ao tratamento durante o período entre 2005 e 2013 no Hospital Pablo Tobón Uribe. Métodos: Estudo retrospectivo descritivo. Resultados: Em 641 transplantes renais, a tuberculose foi confirmada em 12 pacientes. Destes, 25% tinham histórico de rejeição aguda e 50% apresentaram níveis de creatinina superiores a 1,5 mg/dl antes da infecção. A patologia geralmente se apresentava como pulmonar (50%) e disseminada (33,3%). A primeira fase do tratamento consistiu de três meses de HZRE (isoniazida, pirazinamida, rifampicina e etambutol) em 75% dos casos e HZME (isoniazida, pirazinamida, moxifloxacina e etambutol) em 25% dos pacientes. Durante a segunda fase do tratamento, 75% dos pacientes receberam isoniazida e rifampicina e 25% isoniazida e etambutol. A duração do tratamento variou entre seis e 18 meses. Em 41,7% dos pacientes, hepatotoxicidade foi associada ao início do tratamento da tuberculose. Durante o seguimento de um ano a função renal manteve-se estável e a taxa de mortalidade foi de 16,7%. Conclusão: A tuberculose foi responsável por diversos sintomas inespecíficos na população de transplantados renais estudada. Tuberculose pulmonar e disseminada foram as formas mais frequentes de acometimento e necessitaram de tratamento prolongado. Medicamentos contra a tuberculose apresentaram alta toxicidade e mortalidade. Esta infecção deve ser considerada quando o paciente apresenta síndrome febril de origem desconhecida, especialmente durante o primeiro ano após o transplante renal. .


Subject(s)
Animals , Female , Male , Mice , Locus Coeruleus/drug effects , Narcotics/pharmacology , Neural Inhibition/drug effects , Neurons/drug effects , Potassium Channels/metabolism , Barium/pharmacology , Calcium/metabolism , Enkephalin, Methionine/pharmacology , G Protein-Coupled Inwardly-Rectifying Potassium Channels , GTP-Binding Proteins/metabolism , Heterozygote , Homozygote , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Locus Coeruleus/cytology , Locus Coeruleus/physiology , Mice, Knockout , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/physiology , Neurons/physiology , Patch-Clamp Techniques , Protein Subunits , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/deficiency , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels/deficiency , Potassium Channels/genetics
4.
Experimental & Molecular Medicine ; : e67-2013.
Article in English | WPRIM | ID: wpr-83998

ABSTRACT

Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K+ (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca2+-activated K+, inward rectifier K+ and ATP-sensitive K+ channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca2+ channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, alpha-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway.


Subject(s)
Animals , Male , Rats , 4-Aminopyridine/pharmacology , Action Potentials , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Cells, Cultured , Ketanserin/pharmacology , Mesenteric Arteries/drug effects , Muscle Contraction , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Nifedipine/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Spiperone/pharmacology , Vasoconstriction , src-Family Kinases/antagonists & inhibitors
5.
Experimental & Molecular Medicine ; : 749-755, 2012.
Article in English | WPRIM | ID: wpr-110117

ABSTRACT

Cinnamyl alcohol (CAL) is known as an antipyretic, and a recent study showed its vasodilatory activity without explaining the mechanism. Here we demonstrate the vasodilatory effect and the mechanism of action of CAL in rat thoracic aorta. The change of tension in aortic strips treated with CAL was measured in an organ bath system. In addition, vascular strips or human umbilical vein endothelial cells (HUVECs) were used for biochemical experiments such as Western blot and nitrite and cyclic guanosine monophosphate (cGMP) measurements. CAL attenuated the vasoconstriction of phenylephrine (PE, 1 microM)-precontracted aortic strips in an endothelium-dependent manner. CAL-induced vasorelaxation was inhibited by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME; 10(-4) M), methylene blue (MB; 10(-5) M) and 1 H-[1,2,4]-oxadiazolole-[4,3-a] quinoxalin-10one, (ODQ; 10(-6) or 10(-7) M) in the endothelium-intact aortic strips. Atrial natriuretic peptide (ANP; 10(-8) or 10(-9) M) did not affect the vasodilatory effect of CAL. The phosphorylation of endothelial nitric oxide synthase (eNOS) and generation of nitric oxide (NO) were stimulated by CAL treatment in HUVECs and inhibited by treatment with L-NAME. In addition, cGMP and PKG1 activation in aortic strips treated with CAL were also significantly inhibited by L-NAME. Furthermore, CAL relaxed Rho-kinase activator calpeptin-precontracted aortic strips, and the vasodilatory effect of CAL was inhibited by the ATP-sensitive K+ channel inhibitor glibenclamide (Gli; 10(-5) M) and the voltage-dependent K+ channel inhibitor 4-aminopyridine (4-AP; 2 x 10(-4) M). These results suggest that CAL induces vasorelaxation by activating K+ channels via the NO-cGMP-PKG pathway and the inhibition of Rho-kinase.


Subject(s)
Animals , Humans , Male , Rats , Aorta/drug effects , Atrial Natriuretic Factor/pharmacology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Dipeptides/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Methylene Blue/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Oxadiazoles/pharmacology , Phenylephrine/pharmacology , Phosphorylation , Potassium Channel Blockers/pharmacology , Potassium Channels/agonists , Propanols/pharmacology , Quinoxalines/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Vasoconstriction/drug effects , Vasodilation/drug effects , rho-Associated Kinases/antagonists & inhibitors
6.
Clinics ; 66(2): 321-325, 2011. graf
Article in English | LILACS | ID: lil-581521

ABSTRACT

OBJECTIVES: The purpose of this work was to determine whether the intraperitoneal administration of glibenclamide as a K ATP channel blocker could have an effect on the antinociceptive effects of antidepressants with different mechanisms of action. METHODS: Three antidepressant drugs, amitriptyline as a dual-action, nonselective inhibitor of noradrenaline and a serotonin reuptake inhibitor, fluvoxamine as a selective serotonin reuptake inhibitor and maprotiline as a selective noradrenaline reuptake inhibitor, were selected, and the effect of glibenclamide on their antinociceptive activities was assessed in male Swiss mice (25-30 g) using a formalin test. DISCUSSION: None of the drugs affected acute nociceptive responses during the first phase. Amitriptyline (5, 10 mg/ kg), maprotiline (10, 20 mg/kg) and fluvoxamine (20 and 30 mg/kg) effectively inhibited pain induction caused by the second phase of the formalin test. Glibenclamide (5 mg/kg) alone did not alter licking behaviors based on a comparison with the control group. However, the pretreatment of animals with glibenclamide (10 and 15 mg/kg) partially reversed the antinociceptive effects of fluvoxamine but not those of maprotiline. In addition, the highest dose of glibenclamide (15 mg/kg) partially prevented the analgesic effect of amitriptyline. CONCLUSION: Therefore, it seems that adenosine triphosphate-dependent potassium channels have a major role in the analgesic activity of amitriptyline and fluvoxamine.


Subject(s)
Animals , Male , Mice , Analgesics/therapeutic use , Antidepressive Agents/therapeutic use , Glyburide/pharmacology , Pain Measurement/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Analysis of Variance , Amitriptyline/therapeutic use , Drug Interactions , Fluvoxamine/therapeutic use , Models, Animal , Maprotiline/therapeutic use , Pain/chemically induced , Pain/drug therapy , Random Allocation
7.
Journal of Veterinary Science ; : 35-40, 2011.
Article in English | WPRIM | ID: wpr-47191

ABSTRACT

Voltage-gated K+ (Kv) channels have been considered to be a regulator of membrane potential and neuronal excitability. Recently, accumulated evidence has indicated that several Kv channel subtypes contribute to the control of cell proliferation in various types of cells and are worth noting as potential emerging molecular targets of cancer therapy. In the present study, we investigated the effects of the Kv1.1-specific blocker, dendrotoxin-kappa (DTX-kappa), on tumor formation induced by the human lung adenocarcinoma cell line A549 in a xenograft model. Kv1.1 mRNA and protein was expressed in A549 cells and the blockade of Kv1.1 by DTX-kappa, reduced tumor formation in nude mice. Furthermore, treatment with DTX-kappa significantly increased protein expression of p21Waf1/Cip1, p27Kip1, and p15INK4B and significantly decreased protein expression of cyclin D3 in tumor tissues compared to the control. These results suggest that DTX-kappa has anti-tumor effects in A549 cells through the pathway governing G1-S transition.


Subject(s)
Animals , Humans , Mice , Adenocarcinoma/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Elapid Venoms/pharmacology , Elapidae , /antagonists & inhibitors , Lung Neoplasms/drug therapy , Mice, Nude , Neoplasm Transplantation , Potassium Channel Blockers/pharmacology , RNA, Messenger/genetics , Transplantation, Heterologous
8.
Journal of Korean Medical Science ; : 380-386, 2010.
Article in English | WPRIM | ID: wpr-161042

ABSTRACT

Polyphenol (-)-epigallocatechin gallate (EGCG), the most abundant catechin of green tea, appears to attenuate myocardial ischemia/reperfusion injury. We investigated the involvement of ATP-sensitive potassium (K(ATP)) channels in EGCG-induced cardioprotection. Isolated rat hearts were subjected to 30 min of regional ischemia and 2 hr of reperfusion. EGCG was perfused for 40 min, from 10 min before to the end of index ischemia. A nonselective K(ATP) channel blocker glibenclamide (GLI) and a selective mitochondrial K(ATP) (mK(ATP)) channel blocker 5-hydroxydecanoate (HD) were perfused in EGCG-treated hearts. There were no differences in coronary flow and cardiodynamics including heart rate, left ventricular developed pressure, rate-pressure product, +dP/dt(max), and -dP/dt(min) throughout the experiments among groups. EGCG-treatment significantly reduced myocardial infarction (14.5+/-2.5% in EGCG 1 micrometer and 4.0+/-1.7% in EGCG 10 micrometer, P<0.001 vs. control 27.2+/-1.4%). This anti-infarct effect was totally abrogated by 10 micrometer GLI (24.6+/-1.5%, P<0.001 vs. EGCG). Similarly, 100 micrometer HD also aborted the anti-infarct effect of EGCG (24.1+/-1.2%, P<0.001 vs. EGCG ). These data support a role for the K(ATP) channels in EGCG-induced cardioprotection. The mK(ATP) channels play a crucial role in the cardioprotection by EGCG.


Subject(s)
Animals , Humans , Male , Rats , Anti-Arrhythmia Agents/pharmacology , Antioxidants/pharmacology , Catechin/analogs & derivatives , Decanoic Acids/pharmacology , Glyburide/pharmacology , Heart/drug effects , Hemodynamics , Hydroxy Acids/pharmacology , KATP Channels/metabolism , Mitochondria, Heart/drug effects , Myocardial Infarction/pathology , Myocardial Ischemia/pathology , Potassium Channel Blockers/pharmacology , Rats, Wistar
9.
Journal of Korean Medical Science ; : 84-91, 2009.
Article in English | WPRIM | ID: wpr-112920

ABSTRACT

The effects of the antiarrhythmic drug propafenone at c-type kv1.4 channels in Xenopus laevis oocytes were studied with the two-electrode voltage-clamp techinique. Defolliculated oocytes (stage V-VI) were injected with transcribed cRNAs of ferret Kv1.4 delta N channels. During recording, oocytes were continuously perfused with control solution or propafenone. Propafenone decreased the currents during voltage steps. The block was voltage-, use-, and concentration- dependent manners. The block was increased with positive going potentials. The voltage dependence of block could be fitted with the sum of monoexponential and a linear function. Propafenone accelerated the inactivate of current during the voltage step. The concentration of half-maximal block (IC(50)) was 121 micrometer/L. With high, normal, and low extracellular potassium concentrations, the changes of IC(50) value had no significant statistical differences. The block of propafenone was PH- dependent in high-, normal- and low- extracellular potassium concentrations. Acidification of the extracellular solution to PH 6.0 increased the IC50 values to 463 micrometer/L, alkalization to PH 8.0 reduced it to 58 micrometer/L. The results suggest that propafenone blocks the kv1.4 delta N channel in the open state and give some hints for an intracellular site of action.


Subject(s)
Animals , Anti-Arrhythmia Agents/pharmacology , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , /antagonists & inhibitors , Oocytes/drug effects , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channel Blockers/pharmacology , Propafenone/pharmacology , Xenopus laevis
10.
Indian J Physiol Pharmacol ; 2008 Apr-Jun; 52(2): 157-63
Article in English | IMSEAR | ID: sea-106550

ABSTRACT

Marine dinoflagellate Ptychodiscus brevis toxin (PbTx), is known to produce toxic effects on cardiovascular system. The present experiments were conducted to evaluate the effect of synthetic phosphorus containing Ptychodiscus brevis toxin on spontaneously beating right atrium in vitro. The PbTx (0.84-84 microM) decreased the rate and force of right atrial contractions in a concentration-dependent manner. Ethanol, a vehicle present in highest concentration of PbTx, had no effect on atrial rate or force of contraction. Pretreatment with atropine blocked the PbTx-induced decrease in atrial rate and force of contraction. The tetraethylammonium, a potassium channel blocker, blocked the PbTx-induced decrease in atrial rate and force, where as, L-type of calcium channel blocker, nifedipine blocked the PbTx-induced force of contraction but not the rate changes. The results indicate that the PbTx decreased the atrial rate and force of contraction via cholinergic receptors involving K+ channel.


Subject(s)
Animals , Atropine/pharmacology , Calcium Channel Blockers/pharmacology , Cyclopentanes/pharmacology , Dose-Response Relationship, Drug , Heart Atria/drug effects , Male , Muscarinic Antagonists/pharmacology , Myocardial Contraction/drug effects , Nifedipine/pharmacology , Organophosphorus Compounds/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Rats , Receptors, Muscarinic/drug effects , Tetraethylammonium/pharmacology
11.
Indian J Exp Biol ; 2007 Feb; 45(2): 185-93
Article in English | IMSEAR | ID: sea-55654

ABSTRACT

Isolated goat detrusor muscle exhibited spontaneous contractility with an irregular amplitude and frequency. The spontaneity of detrusor muscle exhibited a mean amplitude as 11.99 +/- 0.83 mm and frequency as 1.37 +/- 0.16/min. KATP-channel openers namely, cromakalim or pinacidil (10(-7) - 10(-4) M) added cumulatively, elicited a concentration-related inhibition of both amplitude and rate of spontaneous contractions. The mean IC50 values for both amplitude and frequency for cromakalim were 3.3 x 10(-6) M and 2.9 x 10(-6) M, respectively; and for pinacidil were 2.0 x 10(-5) M and 1.5 x 10(-5) M, respectively. Glibenclamide, a KATP-channel blocker inhibited the cromakalim-induced concentration-related relaxation of spontaneous contractions with a significant increase in its mean IC50. ACh-induced concentration-related contractile response was inhibited in the presence of either cromakalim (10(-4) M) or pinacidil (10(-4) M). The mean EC50 value of ACh, in the presence of cromakalim (2.5 x 10(-3) M) was significantly increased as compared to the control (1.2 x 10(-6) M). In the presence of glibenclamide (10(-5) M) the inhibitory effect of cromakalim was significantly reduced with consequent decrease in the EC50 value (1.9 x 10(-5) M). Application of EFS (30 V and 5 ms) on goat urinary bladder strips at 1, 2, 5, 10, 20 and 30 Hz elicited frequency-related contractile responses. Both cromakalim and pinacidil caused a rightward shift in the frequency-related contractile response curve with significant increase in the mean EF25 and EF50 values, respectively. In the presence of glibenclamide (10(-4) M), the frequency-related inhibitory response curve was shifted to left with significant (P < 0.001) increase in the mean EF25, EF50 and EF75. The present results suggest that in the goat detrusor muscle, agonist and EFS-induced contractile responses were more potently inhibited by cromakalim than pinacidil with activation of glibenclamide sensitive KATP channels.


Subject(s)
Acetylcholine/pharmacology , Animals , Atropine/pharmacology , Cholinergic Agents/pharmacology , Cromakalim/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , Female , Glyburide/pharmacology , Goats/physiology , Male , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/physiology , Pinacidil/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels/antagonists & inhibitors , Urinary Bladder/drug effects
12.
Journal of Korean Medical Science ; : 57-62, 2007.
Article in English | WPRIM | ID: wpr-226405

ABSTRACT

This study was designed to identify and characterize Na+ -activated K+ current (I(K(Na))) in guinea pig gastric myocytes under whole-cell patch clamp. After whole-cell configuration was established under 110 mM intracellular Na+ concentration ([Na+]i) at holding potential of -60 mV, a large inward current was produced by external 60 mM K+([K+] degree). This inward current was not affected by removal of external Ca2+. K+ channel blockers had little effects on the current (p>0.05). Only TEA (5 mM) inhibited steady-state current to 68+/-2.7% of the control (p<0.05). In the presence of K+ channel blocker cocktail (mixture of Ba2+, glibenclamide, 4-AP, apamin, quinidine and TEA), a large inward current was activated. However, the amplitude of the steadystate current produced under [K+]degree (140 mM) was significantly smaller when Na+ in pipette solution was replaced with K+ - and Li+ in the presence of K+ channel blocker cocktail than under 110 mM [Na+]i. In the presence of K+ channel blocker cocktail under low Cl- pipette solution, this current was still activated and seemed K+ -selective, since reversal potentials (E(rev)) of various concentrations of [K+]degree-induced current in current/voltage (I/V) relationship were nearly identical to expected values. R-56865 (10-20 microgram), a blocker of IK(Na), completely and reversibly inhibited this current. The characteristics of the current coincide with those of IK(Na) of other cells. Our results indicate the presence of IK(Na) in guinea pig gastric myocytes.


Subject(s)
Male , Female , Animals , Tetraethylammonium Compounds/pharmacology , Stomach/physiology , Sodium/metabolism , Potassium Channels/physiology , Potassium Channel Blockers/pharmacology , Myocytes, Smooth Muscle/physiology , Membrane Potentials , Guinea Pigs , Chlorides/pharmacology , Calcium/metabolism
13.
Biocell ; 30(1): 43-49, abr. 2006. ilus, tab
Article in English | LILACS | ID: lil-448077

ABSTRACT

Electrophysiological events occur early after fertilization, along with changes in intracellular Ca2+ concentration. Passive electrical parameters were determined in golden hamster oocytes by whole cell patch-clamp method. In separate experiments the effect of 4-aminopyridine on resting oocytes was tested. The single-channel patch clamp configuration was employed to assess the electrical response to fertilization with homologous sperm. Structure of oocytes submitted to patch clamp was evaluated with scanning electron microscopy and found to be preserved.Oocyte diameter was 70.2 ± 2.2 µm; their resting parameters were: membrane potential 23.8 ± 0.8 mV; total membrane specific resistance 519.1 ± 94.6 Ù.cm2, and specific capacity 0.99 ± 0.03 µF.cm-2. Total membrane current was decreased by 42 % by 4-aminopyridine.Control oocytes and oocytes exposed to sperm differed in their membrane currents in response to a voltage ramp clamping membrane potential from - 100 mV to + 100 mV. In both cases, currents were largest at the most negative potentials, but sperm-exposed oocytes had larger currents. Additionally, while in controloocytes the current was inward at negative potentials but outward at positive potentials, in the presence of spermatozoa oocytes was inward within the whole voltage range tested. This latter current may represent Ca2+ en try


Subject(s)
Male , Guinea Pigs , Animals , Female , Potassium Channel Blockers/pharmacology , Fertilization/physiology , Mesocricetus , Oocytes , Oocytes/physiology , Oocytes/ultrastructure , Patch-Clamp Techniques/veterinary
14.
Indian J Exp Biol ; 2005 Apr; 43(4): 324-9
Article in English | IMSEAR | ID: sea-59079

ABSTRACT

In the present investigation we have examined the hypothesis that calcium-dependent K+ channels (K(Ca)) are involved in the sodium nitroprusside (SNP)-induced vasodilatation of goat coronary artery. SNP (10(-9)-3 x 10(-6) M), added cumulatively, relaxed K+ (30 mM)-contracted coronary artery ring segments in a concentration-dependent manner with an EC50 of 1.32 x 10(-7) M (95% CL, 0.93-1.86 x 10(-7) M; n = 21). K(Ca) blocker, tetraethyl ammonium (1 mM) caused a rightward shift in the concentration-response curve of SNP with a corresponding increase in EC50 (1.62 x 10(-6) M; 95% CL, 0.44-6.02 x 10(-6) M, n = 4) of nitro vasodilator. Lowering of extra cellular Ca2+ in the physiological saline solution to 1/4 of normal selectively attenuated the vasorelaxant response of SNP, thereby causing an increase in its EC50 (2.4 x 10(-6) M; 95% CL, 1.23-4.68 x 10(-6) M, n = 4). Exposure of the tissues to high K+ (80 mM) solution, a protocol adopted to reduce the K+ gradient across the cell membrane, markedly inhibited the coronary artery relaxations induced by SNP (EC50, 2.54 x 10(-6) M; 95% CL, 1.31-4.91 x 10(-6) M, n = 4), when compared with tissues contracted with low K+ (30 mM) solution (EC50 7.9 x 10(-8); 95% CL, 4.4 x 10(-8)-1.44 x 10(-7) M, n = 6). The results suggested that a major component of SNP-induced relaxation of goat coronary artery was mediated by K(Ca) channels.


Subject(s)
Animals , Barium Compounds/pharmacology , Calcium/metabolism , Chlorides/pharmacology , Coronary Vessels/drug effects , Dose-Response Relationship, Drug , Goats , Methylene Blue/pharmacology , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Calcium-Activated/metabolism , Potassium Chloride/pharmacology , Vasodilation/drug effects
15.
Braz. j. med. biol. res ; 38(1): 91-97, Jan. 2005. graf
Article in English | LILACS | ID: lil-405536

ABSTRACT

We examined the effect of several K+ channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium chloride (TEA), 4-aminopyridine (4-AP), and cesium on the ability of fentanyl, a clinically used selective æ-opioid receptor agonist, to promote peripheral antinociception. Antinociception was measured by the paw pressure test in male Wistar rats weighing 180-250 g (N = 5 animals per group). Carrageenan (250 æg/paw) decreased the threshold of responsiveness to noxious pressure (delta = 188.1 ± 5.3 g). This mechanical hyperalgesia was reduced by fentanyl (0.5, 1.5 and 3 æg/paw) in a peripherally mediated and dose-dependent fashion (17.3, 45.3 and 62.6 percent, respectively). The selective blockers of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 æg/paw) and tolbutamide (80, 160 and 240 æg/paw) dose dependently antagonized the antinociception induced by fentanyl (1.5 æg/paw). In contrast, the effect of fentanyl was unaffected by the large conductance Ca2+-activated K+ channel blocker ChTX (2 æg/paw), the small conductance Ca2+-activated K+ channel blocker apamin (10 æg/paw), or the non-specific K+ channel blocker TEA (150 æg/paw), 4-AP (50 æg/paw), and cesium (250 æg/paw). These results extend previously reported data on the peripheral analgesic effect of morphine and fentanyl, suggesting for the first time that the peripheral æ-opioid receptor-mediated antinociceptive effect of fentanyl depends on activation of ATP-sensitive, but not other, K+ channels.


Subject(s)
Animals , Male , Rats , Analgesia , Analgesics, Opioid/antagonists & inhibitors , Analgesics, Opioid/pharmacology , Fentanyl/antagonists & inhibitors , Fentanyl/pharmacology , Potassium Channels, Calcium-Activated , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Pain Measurement/drug effects , Rats, Wistar
16.
Yonsei Medical Journal ; : 649-660, 2004.
Article in English | WPRIM | ID: wpr-69250

ABSTRACT

Hepatic stellate cells (HSCs) are known to play a role in the pathogenesis of the increased intrahepatic vascular resistance found in chronic liver diseases. The aim of this study was to evaluate the K+ and Ca2+ currents in cultured HSCs from rat liver, through the patch-clamp technique. Most cells were positive for desmin immunostain after isolation and in alpha-smooth muscle actin immunostain after 10 - 14 days of culturing. Outward and inward rectifying K+ currents were confirmed. Two different types of K+ currents were distinguished: one with the inward rectifying current and the other without. The outward K+ currents consisted of at least four components: tetraethylammonium (TEA) -sensitive current, 4-aminopyridine (4-AP) -sensitive current, pimozide-sensitive current and three blocker-resistant current. The peaks of the outward K+ currents evoked by a depolarizing pulse were decreased to 32.0 +/- 3.0, 62.8 +/- 3.7 and 32.8 +/- 3.5% by 5 mM TEA, 2 mM 4-AP and 15microM pimozide, respectively. Moreover, the combined application of three blockers caused 86.6 +/- 4.8% suppression. The inward currents evoked hyperpolarizing pulses were inwardly rectifying and almost blocked by Ba2+. Elevation of external K+ increased the inward current amplitude and positively shifted its reversal potential. Voltage- dependent Ca2+ currents which were completely abolished by Cd2+ and nimodipine were detected in 14 day cultured HSCs. In this study, the cultured HSCs were found to express outward K+ currents composed of multiple pharmacological components, Ba2+-sensitive inward rectifying K+ current and L-type Ca2+ current.


Subject(s)
Animals , Male , Rats , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/physiology , Cells, Cultured , Hepatocytes/cytology , Immunohistochemistry , Membrane Potentials/drug effects , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated/physiology , Rats, Sprague-Dawley
17.
Journal of Korean Medical Science ; : 701-706, 2003.
Article in English | WPRIM | ID: wpr-221852

ABSTRACT

We present accidental findings that potassium channel blockers, such as tetraethyl-ammonium (TEA) or 4-aminopyridine (4-AP), inhibit the sustained tonic contraction induced by carbachol in rat detrusor muscle strips. The relatively lower concentrations (5 mM) potentiated phasic contractions. The potentiation of phasic contraction was not observed in nicardipine pretreated condition. In nicardipine pretreated condition, the concentration-response curves for the negative inotropic effect of potassium channel blockers were shifted to the right by the increasing concentration of carbachol from 0.5 micrometer to 5 micrometer. IC50 was changed significantly from 0.19 to 0.64 mM (TEA) and from 0.21 to 0.96 (4-AP). Such inhibitory effects were also observed in Ca2+ depleted condition, where 0.1 mM EGTA and 1 micrometer thapsigargin were added into Ca2+ free solution. In conclusion, inhibitory effects of potasssium channel blockers on carbachol-induced contraction may be ascribed to the direct inhibition of receptor-agonist binding.


Subject(s)
Animals , Female , Male , Mice , Rabbits , Rats , 4-Aminopyridine/pharmacology , Urinary Bladder/metabolism , Calcium/chemistry , Calcium Channel Blockers/pharmacology , Carbachol/pharmacology , Dose-Response Relationship, Drug , Guinea Pigs , Inhibitory Concentration 50 , Muscle Contraction/drug effects , Muscles/drug effects , Nicardipine/pharmacology , Potassium Channel Blockers/pharmacology , Protein Binding , Rats, Sprague-Dawley , Tetraethylammonium/pharmacology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL